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The graph theory derived model for fhe bonding topology in the globally
R delocalized polyhedral boranes BgHg2~ and BjyH{22 is evaluated by comparison
e of the energies of the core molecular orbitals with those obtainéd by the 1962
e, LCAO-MO extended Huckel calculations of Hoffmann and Liéscomb. Of particular
interest is how well the complete graphs Kg and K2 used in the graph theory
R derived model approximate the bonding topologies of the unique internal orbitals

(radial orbitals) of the octahedron and icosahedron, respectively. In the case

r.t of the BgHgZ~ octahedron the single positive eigenvalue of the K¢ graph
." corresponds to the results from the extended Huckel calculations. In addition,
i\;:z, the parameters from the latter calculations indicate a ratio of 0.625 for the
?;:ﬁ overlap of the unique internal orbitals of the trans atom pairs relative to cis

atom pairs as compared with unity implied by an unweighted Kg graph. In the

:ﬁi?:, case of the BiaH122~ icosahedron the graph theory derived model is far less
‘uif::. satisfactory since the single positive eigenvalue of the K13 graph disagrees with
::f":}:f the four bonding core molecular orbitals (an A1g and three triply degenerate
15‘5; T1y molecular orbitals) found by the extended Huckel calculations after removing
,'EE:‘:' - the effect of the mixing of core and surface bonding orbitals corresponding to
ko the same irreducible -representations. However, this core-surface orbital mixing
;é'g::: raises the energy of the triply degenerate Ti, core molecular orbitals to
‘:;‘sz antibonding levels so that the graph t!\eory derived model fortuitiously gives
e correct skeletal electron counts for the regular icosahedron despite this
‘E.::' fundamental error.




§ 1. INTRODUCTION

Several years ago we developed a graph-theoretical approach for the study
of the bonding topology in polyhedral boranes, carboranes, and metal clusters.2,3

Subsequent work has shown this approach to be very effective in relating electron

-

count to cluster shape for diverse metal clusters using a minimum of computation.

Metal clusters treated effectively by this ahproach include post-transition element

ATl .
T T

clusters,® osmium carbonyl clusters,> gold clusters,5:7 platinum carbonyl
h clusters, 5.8 and rhodium carbony! clusters having fused polyhedra.?.10
This graph-theory derived method uses ideas originating from H\t':'ckel theory.!1.12
However, in order to eliminate the need for computation for determination of

the signs of the energy levels, additional assumptions are introduced in order

W
A\ . . .
j‘; to facilitate the estimation of energies at least to the correct signs. This paper
examines in greater detail some of these additional assumptions using energy
‘ levels obtained by extended Huckel calculations as a basis for comparison. Since
'f this comparison {s facilitated by selecting systems having maximum symmetry
and a minimum number of external orbitals to mix with the polyhedral core and
! surface bonding orbitals, the original Hoffmann-Lipscomb LCAO-MO extended
i Hiickel calculations on the polyhedral borane anions BnHp> are used!3 selecting
their results for the "3N problem" of the regular polyhedral Bg Hsz‘ and B4 zlez'.
i
i:. ;
KR . 2. BACKGROUND .
;;' The_topology of chemical bonding can be -represented by a graph in which
)
,::’5 the vertices correspond to atoms or orbitals participating in the bonding and

the edges correspond to bonding relationships. The adjacency matrix A of a

graph, such as a graph representing chemical bonding, can be defined as follows:
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0 if i=j
Ajj = 41ifiand j are connected by an edge (§))

. 0 if i and j are not connected by an edge

The eigenvalues of the adjacency matrix are obtained from the following

-

determinantal equation:

. o~

[A-xll=0 (2)
!
' where | is the unit matrix (Ij; = 1 and I;; = 0 for i # ).
: The eigenvalues of the adjacency matrix of the graph representing the relevant
N - chemical bonding topology as determined by equation 2 are closely related to
::‘ the energy levels as determined by Hickel theory.!1.14,15,16 Thys Hiicke!  theory

; uses the secular equation

|[H-ES| =0 . (3)

in which the energy matrix H and overlap matrix S can be resolved into the unit

- -

matrix | and the adjacency matrix A as follows:

-~
P’y

N H=al+ BA (aa)
.

kY

. S=1+SA (4b)
;;

o

W )

4

o The energy levels of the system are related to the eigenvalues of the adjacency

matrix A (equation 2) as follows:
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. atX (5)

R Thus a positive eigenvalue'x of A corresponds to a bonding orbital and a negative
Vil eigenvalue x corresponds to an antibonding orbtial in the corresponding chemical
system. Furthermore, in Huckel theory S is taken to be zero and @ is used as

the zero of energy (i.e., set to zero). In this case

E=x8 (6)
:'f‘ and the energy levels are directly proportional to the eigenvalues of the adjacency
& matrix.
,E‘::é The polyhedral boranes discussed in this paper exhibit globally delocalized
:'?' bonding.2.3 A vertex boron atom in such systems uses three of its four valence
ek aorbitals for intrapolyhedral bonding leaving one vaience orbital as an external
f;::;é orbital to bond to the external group, typically a monovalent group such as
;}:-:‘f hydrogen or halogen. One of the major triumphs of the graph-theory derived
‘:: approach to the bonding topology in globally delocalized systems is the
‘;éiéé demonstration of the close analogy between the bonding in two-dimensional planar
EE‘::,: aromatic systems such as benzene and that in three-dimensional deitahedral
:q; boranes and carboranes.2 In this context a deltahedron is defined as a polyhedron :
é%% in which all faces are triangles. Thus consider a globally delocalized polygonal
;:' or deltahedral system having n vertices. In such a system the three internal ;
e orbitals on each vertex atom are divided into two twin internal orbitals (called |
EEEE::: ' "tangential" in some treatments‘?) and a unique internal orbital (called "radial"
53:;‘; in some treatments!?). Pairwise overlap between the 2n twin internal orbitals
a;:‘;;. is responsibie for the formation of the polygonal or deltahedral framework and
AT

e leads to the splitting of these 2n orbitals into n bonding and n antibonding orbitals.
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This bonding topology can be represented by a disconnected graph having 2n
vertices corresponding to the 2n twin internal orbitals and n K2 components
where a K3 con;ponent has two vertices with an edge connecting them. The
dimensionality of this bonding of the twin internal orbitals is one less than the
dimensionality of the globally delocalized system. Thus in the case of the
two-dimensional planar polygonal systems such as benzene,' the pairwise overlap
of the 2n twin internal orbitals leads to the g-bonding network which may be
regarded as a collection of n one-dimensional bonds along the perimeter of the
polygon involving adjacent pairs of polygonal vertices. The n bonding and n
antibonding orbitals correspond to the ¢ bonding and o* antibonding orbitals,
respectively. In the case of the three-dimensional deltahedral systems, the
pairwise overlap of the 2n twin internal orbitals results in bonding over the
two-dimensional surface of the deltahe&ron, which may be regarded as
(topologically) homeomorphic to the sphere. .

The equal numbers of bonding and antibonding orbitals formed by pairwise
overlap of the twin internal orbitals are supplemented by additional bonding
and antibonding molecular orbitals formed by global mutual overlap of the n

unique internal orbitals. This bonding topology can be represented by a graph

G in which the vertices correspond to the vertex atoms of the polygon or
- deltahedron or (equivalently) their unique internal orbitals and the edges represent ‘

pairs of overlapping unique internal orbitals. The relative energies of the

additional molecular orbitals arising from such overlap of the unique internal

orbitals are determined from the eigenvalues x of the adjacency matrix A of

the graph G (see equations 2, 5, and 6, above). In the case of benzene the graph

G is the Cg graph (hexagon) which has three positive and three negative eigenvalues

corresponding to the three 7 bonding and three 7™* antibonding orbitals,

respectively. In the case of a globally delocalized deltahedron having n vertices

o Y D



such as found in the deltahedral boranes BoHn2™ and the carboranes C2Bp-2Hp
(6 < n < 12), the graph G is the complete graph K, in which each of the vertices
has an edge going to every other vertex leading to a total of n(n-1)/2 edges. This
corresponds to an n—center bond at the center (core) of the deltahedron formed
by overlap of each unique internal orbital with every other u_nique internal orbital.
The complete graph K,; has one positive eigenvalue, namely n-1, and n-1 negative
eigenvalues, namely -1 each, regardless of the value of n indicating that the
n-center éore bond in a globally delocalized deltahedron leads to only one new
bonding molecular orbital. The sum of the n bonding orbitals arising from the
surface bonding of the twin internal orbitals and the single bonding orbital arising
from the n-center core bonding of the unique internal orbitals gives a total of
n+1 bonding orbitals for globally delocalized deltahedra having n vertices. Filling
these n+1 bonding orbitals with electron pairs in the usual way gives a total of
2n+2 bonding electrons in accord with the observed number of skeletal electrons
required to form stable globally delocalized deltahedral boranes and carboranes.
The major objective of this paper is to examine how well the complete graph
Kn approximates the core bonding in globally delocalized deltahedral systems.
Thus, consider an octahedral borane such as le-lsz‘. The corresponding complete
graph Kg has (6)(5)/2 = 15 edges. Among these 15 edges, 12 represent overlap
of the unique internal orbitéls located on adjacent vertex atoms of the oc.tahedron,

namely a pair of atoms connected by one of the 12 edges. Such edges represent

<is interactions. The remaining 3 edges of the Kg graph represent overlap of

the unique internal orbitals situated on one of the three pairs of antipodal vertices

4 of the octahedron. Such edges represent trans interactions. Use of an unweighted

[}

°

DA

'*\" Kg¢ graph to represent the core bonding topology in an octahedron gives equal
-

:':';‘:.: weights -to the cis and traps interactions despite their obvious geometric
o
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difference. This problem was already recognized by Schmidtke in 1967 in one
of the early papers pointing out the relationship between graph theory and Huckel
theory.!¥ In group theoretical terms the graph theory derived model uses the
symmetric group Sg (i.e., the automorphism group of the complete graph Kg)
rather than its subgroup Op (i.e., the point group of the octahedron) to represent
the symmetry of the skeletal bonding manifold of octahedral boranes such as
BsHsz‘, which consists of the 6Kj surface bonding and the Kg core bonding.
The actual Op rather than Sg symmetry of these systems will result in partial
or complete removal of the five-fold degeneracy of the core antibonding orbitals
and the six-fold degeneracies of the surface bonding and antibonding orbitals.

A similar situation occurs in icosahedral boranes such as B12H122'. The
corresponding complete graph K13 has (12)(11)/2 = 66 edges. Among these 66
edges, 30 edges represent overlap of the unique internal orbitals located on
adjacent vertex atoms of the icosahedron, namely a pair of atoms connected
by one of the 30 edges and corresponding to the ortho interaction using carborane
nomenclature. An additional 30 edges of K13 represent overlap of the unique
internal orbitals located on non-adjacent, non-antipodal vertex atoms of the
icosahedron, namely the meta interaction. The remaining 6 edges of K12 represent
overiap of the unique internal orbitals located on the 6 pairs of antipodal vertices
of the icos;hedron, namely the m interactio.n. Use of an unweighted K132 graph
to represent the core bonding topology of an icosahedron gives equai weights
to the ortho, meta, and para relationships despite their obvious geometric
difference. The graph theory derived model thus uses the symmetric group Si3
of order 12! = 479,001,600 rather than the icosahedral group I, of order 120 to
represent the symmetry of the skeletal bonding manifold. of icosahedral boranes

such as 812H122', which consists of the 12K) surface bonding and the K3 core
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bonding.

'Reduction of the symmetry from that of the symmetric groups S, (nh = 6 or
12, respectively) to the polyhedral groups Op, and I, for octahedral and icosahedral
boranes, respectively, not only splits some molecular orbitals of high degeneracies
but also leads to some mixing of the core and surface bonding.' Thus in the case
of octahedral boranes under O symmetry the core bonding Has the representation
A1g + T1y + Eg and the surface bonding has the representation Ty + Tag + T2y
+ T1g. The Tqy core and surface bonding molecular orbitals can therefore overlap
leading to corresponding lowering and raising of the energ;es of the two molecular
orbitals (designated as AE(T1y)). Therefore, the Ty, orbital energies determined
by computational methods based on Oy, symmetry, including the extended Huckel
method, do not correspond to pure core or surface bonding but also include the
interaction 4E(T1,), which represents another variable which needs to be evaluated
before the graph theory derived methods can be compared with various
computations. Thus in an octahedral borane such as BsHsz' under Op symmetry,
only the Alg and Eg molecular orbitals can represent pure core bonding. In
octanedral metal clusters in which external bonding orbitals clearly play a major
role (e.g., Cog(CO)14% studied by Mingos!9), even the A1g and Eg molecular

orbitals do not represent pure core bonding because of interaction with other

orbitals of A1g and Eg symmetries arising from the external bonding.

A similar situation occurs for icosahedral boranes. Under I, symmetry their
core bonding has the representation Ag + T1y + T2y + Hg and their surface bonding
has the representation T1y + Hg + Gy + Gg + Hy + T1g. The T1y and Hqy core
and surface bonding orbitals mix with energies AE(Tqy) and AE(Hg), respectively,
leaving only Ag and Ty as pure core bonding orbitals.

This paper compares the graph-theory derived and Huckel theoretical models

for BgHg2™ and B12H122" by determining which edge weights for the corresponding
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Kn graphs retaining the polyhedral symmetries O and Ip, respectively, reproduce
the energies for the pure core orbitals (A1g and Eq for BsHsz' and Ag and Ty
for B12H1227) calculated by the extended Huckel method!3 avoiding externa!
orbitals (i.e., the "3N" set of Hoffmann and Lipscomb!3) in order to eliminate
core-external orbital mixing effects. These edge weights are then used to
calculate hypothetical energies for the impure core orbitals (T, for BsHsz"
and Tm and Hg for B12H122’) in the absence of mixing (unperturbed core energies).
Comparison of these hypothetical energies with the actual energies from the
extended Hlckel calculations!3 allows evaluation of the core-surface mixing
energies (AE(Tqy) for BgHg?™ and AE(Tyy) and AE(Hg) for ByaHi22). The
assumptions of the simple graph theory derived bonding model can then be
evaluated using the following observations: :
(1) The single positive eigenvalue of the complete K, graphs should correspond
to the completely symmetric (A1g or Ag) core orbital being the only bonding
orbital. All other core orbitals should have antibonding unperturbed core energies
corresponding to the n~1 negative K, eigenvalues.

(2) The weights of the edges in the polyhedrally weighted K, graphs representing
non-adjacent vertices in the octahedron or icosahedron should be close to the
unit weights taken for the edges in the K, graphs representing adjacent vertices
in the polyhedron. - - -

The first observation is the important observation affecting applicability of the
graph theory derived methods. Deviations of edge weights from unity are not

serious if they do not create more than one positive eigenvalue for the core

bonding.

3. THE OCTAHEDRON

- Consider an octahedrally weighted Kg complete graph having 12 edges of
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unit weight corresponding to the octahedron edges and the remaining 3 edges
of weight t corresponding to the three octahedron antipodal pairs. The spectrum
N of this graph can be determined by symmetry factoring2? using a thr ‘e-fold
ol ‘axis (Figure 1). The symmetric branch (A in Figure 1, top) gives the eigenvalue

&4+t corresponding to the A1g molecular orbital as well as one of the -t eigenvalues

:: 4 of the triply degenerate T, molecular orbital. The doubly degenerate E branch
¥,
h gives the other two -t eigenvalues of the triply degenerate T, molecular orbital

as well as the two -2+t eigenvalues of the doubly degenerate Eg molecular orbital.

Note that any positive value of t is sufficient to lead to only one positive

E?E eigenvalue, namely the 4+t eigenvalue of the A|g orbital, and five negative
‘ eigenvalues, namely the -t eigenvalues of the triply degenerate Ti, orbitals
‘ and the -2+t eigenvalues of the doubly degenerate Eg orbital. This indicates
;,. that any positive trans interaction in an octahedron gives the same distributiqn
v of bonding (1) and antibonding (5) orbitals as the unweighted Kg graph used in
zs the graph theory derived model2 for BgHsz‘, C2ByHg, and globally delocalized
§§ octahedral metal clusters. Thus for octahedral boranes and metal clusters the
i success of this model is not very dependent upon the value taken for t. Note
fé’ also that setting t = 0 gives the spectrum of the octahedron (+4, 0, 0, 0, -2, -2)
i?;g whereas setting t = 1 gives the spectrum of the Kg complete graph (+5, -1, -1,
3 -1, -1, -1), '

;;‘:": The octahedron has two pure core bonding molecular orbitals, namely Alg
.f?: ‘ and Eg in the absence of mixing with external orbitals (see above). The computed
.;?: values for the energies of these two orbitals substituted into equation 6 generate
;ﬁ:. two equations in t and B; these equations can be solved to determine these

parameters provided that the zero energy level separating bonding and antibonding

orbitals is known. Table 1 summarizes the results of such calculations using

i the energies computed by Hoffmann and Lipscomb!3 for the "3N orbitals" of




'le-lsz‘. Thus the computed energies for the A1g and Eg core bonding molecular
orbitals generate the following equations in t and B:

Argt (8+t)8 = 2.969 (7a)
Eg (-2+4)8 = -0.884 " (7b)
Solving these two equations gives t = 0.625 and 8 = 0.642. These values of t
and 8 can then be used to calculate a hypothetical value for the T, core molecular

orbital in the absence of core-surface interaction using the following equation:

Ty (40.625)(0.642) = -0.401 (8)

~ This compares with an energy of -0.829 found in the Hoffmann-Lipscomb

calculation for the T, core orbital thereby indicating the interaction parameter
AE(T1y) to be -0.301 - (-0.829) = 0.428. Applying this correction to the energy
of the Hoffmann~Lipscomb calculation of the T, surface orbital gives energies
of 0.595 and 0.493 for the bonding surface orbitals (T, + ng) and -0.816 and
~0.671 for the antibonding surface orbitals (Tgy + T1g). This distribution of the
energies of the surface bonding orbitals is crudely consistent with the prediction
by the graph theory derived method2 of six bonding and six antibonding surface
orbitals with the same absolute values for the energies arising from the fpectra
of six equivalent disconnected K, graphs.

Attempts have been made wiith much less success to apply this method to
more recent computations on octahedral boranes and metal clusters. Armstrohg,
Perkins, and Stewart2! report self-consistent molecular orbital calculations

on highly symmetrical borane cage anions including BgHg2™. The zero energy

-
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level of their éalculation is not defined so thata as well as 8 and t are unknowns;
thus equation 5 must be used rather than equation 6. This leads to an
underdetermined system with only two equations to determine three unknowns;
solution of this system to obtain meaningful numbers is not feasible.

The best example of a relevant calculation on a globally delocalized octahedral
metal cluster is the Wolfsberg-Helmholtz molecular orbital calculation by Mingos!?
on Cog(CO)14%. However, because of the large number of external orbitals
involved in this and other metal clusters, even the A1q and Eg molecular orbitals
do not represent pure core bonding. Thus the Cos(CO)m"’ system has three
molecular orbitals of Ajg symmetry and four molecular orbitals of Eg symmetry
thereby precluding an analysis of the type given above for the Hoffmann-Lipscomb

85H52‘ computation.
4. THE ICOSAHEDRON

Consider an icosahedrally weighted K13 complete graph having 30 edges of
unit weight correspending to the icosahedron edges, 30 edges of weight m
corresponding to the _mgxa. interaction of non-adjacent non-antipodal vertex pairs,
and 6 edges of weight p corresponding to the para interaction of the 6 icosahedron
antipodal pairs. The spectrum of this graph can be determined by symmetry
factoring using first a three-fold axis and then a two-fold axis (Figure 1, bottom).
The fully symmetric branch (AG) gives the eigenvalue 5+5m+p "corresponding
to the Ag molecular orbital as well as one of the -1-m+p eigenvalues of the
quintuply degenerate 'Hg molecular orbitals. The remaining four -1-m+p
eigenvalues of the quintuply degenerate Hg molecular orbitals arise from the
two isolated vertices of the doubly degenerate EG branch. The AU branch and

the doubly degenerate EU branch generate a quadratic equation whose roots
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give the eigenvalues of the triply degenerat'e Tiy and Ty m.olecular-orbitals.
Note that the T, molecular orbital has a positive eigenvalue unless p >v5 (1-m),

o Thus with most likely values of the edge weights m and p the icosahedrally

.::&:s’ weighted K12 graph (Figure 1) has four positive eigenvalues (the Ag and triply
%ﬁ:;*x:f degenerate Tj, orbitals) rather than only the single positive eigenvalue
‘*}:' ) characteristic of the unweighted K12 graph. Note also thaf setting m=0 and p=0
E:fg:: gives the spectrum of the icosahedron (+5, +7/5, +v5, + V5, -1, -1, =1, =1, -1, =5,

-¥5, -¥5) whereas setting m=1 and p=1 gives the spectrum of the K13 complete

o graph (+11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1k

sy

::;E::‘ The icosahedron like the octahedron has two pure core bonding molecular
4y

orbitals, namely Ag and T2y. The computed values for their energies substituted

‘::.:" in equation 6 generate two equations in the three parameters m, p, and 8. The
::‘: system is therefore underdetermined and an additional relationship Petween
s m, p, and 8 must be used in order to obtain unique values for the three parameters.
::E:i, Instead: of assuming such a relationship, consider the minimum value of p to be
3%{2:}: zero and the maximum value of p to be m. Then plot against p in this range

the corresponding values of the parameters m and 8 (Figure 2) and the molecular
u orbital energy levels adjusted by removal of the core-surface interaction (Figure
5] 3) using the data from the Hoffmann-Lipscomb 3N extended Hlckel computations
‘ on BiaH; 22‘. The values of B and the core molecular orbital energies are seen
from Figures 2 and 3 to be rather insensitive to the actual value of p taken.

By far the most important conclusion from these data is that for all likely
values of p the core bonding in.icosahedral 812H122" leads to four positive
eigénvalues (A19 + T1yu) rather than the single positive eigenvalue obtained by
using the K12 completé graph for the core bonding topology. The graph theory

derived model? is thus incorrect for the icosahedron since it leads to the wrong

number of positive eigenvalues for the core bonding, namely one rather than

(o) ’
- . " - - ", - < ‘,
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four. Nevertheless, the graph theory &erived model works for icosahedral boranes
and carboranes because this fundamen.tal error is corrected by mixing the bonding
T1y core orbitals with the bonding T1, surface orbitals. Thus the mixing energy
AE(Tqy) is so large (1.1 to 1.6 on the scale of Table 2) that the core Ty, orbitals
are raised to antibonding energies by the core-surface interaction so that only
one core bonding orbital, namely the Ag, orbital, remains after this interaction.
This is why the graph theory derived model for icosahedral BiaH{22~ leads to
the experimentally observed skeletal electron count even though the assumption
of the K12 complete graph for the core bonding topology leads to the incorrect
number of core bonding orbitals (before core-surface mixing).

Important experimental support for these ideas is found in the centered
icosahedral gold cluster Auj3Cl(PMesPh)g3* (ref. 22) in which there is no
surface bonding comparable to that of ByaH{32~ because the p orbitals of the
12 peripheral gold atoms in this cluster have' energies too high to function as
twin internal orbitals for surface bonding.5:7 Turning off the surface bonding
in this way in the centered icosahedral Auj3Cl3(PMeaPh)yg3* leads to four core
bonding orbitals in accord with the energy levels of the icosahedrally distorted
K12 graph for any reasonable levels of the parameters m and p (Figure 1 bot‘tom

and Figure 3). This point may also relate to the general observation® that the

- overlap topology of the n-1 peripheral gold atoms in a centered Aup cluster leads

to electron counts corresponding not to those expected for a Kp-1 complete

graph but instead to that of the polyhedron formed by the peripheral gold atoms.
5. SUMMARY

Determination of the eigenvalues of the octahedrally weighted Kg complete

graph indicates one positive eigenvalue for any positive weighting (t) of the




antipodal (trans) interactions relative to unit adjacent [cis) interactions. This
indicates that the unweighted Kg graph used in the graph theor:y derived model
for the octahedral boranes, carboranes; and metal clusters? is adequate for
determining the correct number of core bonding orbitals and therefore the
corresponding electron counts. The Hoffmann-Lipscomb calculations!3 on BgHg2™
correspond to a value of 0.625 for this parameter t. '

A similar determination of the eigenvalues of the icosahedrally weighted
K12 complete graph indicates four positive eigenvalues for any likely values
for the weighting parameters m and p. This is in disagreement with the graph
theory derived model2 for icosahedral boranes and carboranes which uses the
unweighted K12 graph for the core bonding leading to only a single positive
eigenvalue corresponding to a singie core bonding orbital. However, core~surface
bonding interactions raise the energies of three of the four core bonding orbitals
to antibonding levels so that despite this major inaccuracy thé graph theory derived
model fortuitiously gives correct electron counts for icosahedral boranes.

The analysis in this paper shows that the graph theory derived model? describes
a bonding topology which is accurate enough to lead to correct electron counts
in octahedral clusters but leads to difficulties in icosahedral clusters. However,
most globally delocalized metal clusters fortunately are octahedra to which
this simple bonding approach can be reliably applied. It thus appears that the
graph theory derived models will continue to be useful in understanding the
relationship between shape and electron count in the large variety of known

polyhedral boranes, carboranes, and metal clusters.
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TABLE 1
MOLECULAR ORBITAL ENERGY PARAMETERS
FOR OCTAHEDRAL BgHg2~

Calculated Adjusted by
Molecular by Hoffmann Removal of Core-
Orbital and Lipscomb3(3N) Surface Interaction
LCore Bonding '
Alg 2.969 2.969
Eg -0.883 -0.884
Surface Bonding
Tag 0.493 0.493
TZu ‘0.“16 -00416
Tig -0.671 -0.671
QOther Parameters
8 0.642 0.642
t , 0.625 0.625
A E(Tqy) 0.428 0

a) From R. Hoffmann and W.N. Lipscomb, . Chem. Phys., 36,
2179 (1962).
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A
e
fij:,ff Figure 1: Symmetry factoring schemes for the octahedraily weighted K¢ graph
!7;‘
(top) and the isocahedrally weighted K1 graph (bottom). The
\:j;§ designations of the branches correspond to that used in R.B. King,
)
..:i- JTheor. Chim. Acta, 43, 223 (1977). The symmetry factoring of the
)
& octahedrally weighted Kg graph uses a three-fold axis (C3) leading
;Zg ‘ to an A branch and a doubly degenerate E branch. The symmetry
b
:;ii; factoring of the icosahedrally weighted K12 graph first uses a three-fold
ei:’t‘
axis (C3) similarly leading to A and doubly degenerate E branches,
,.;::.1; which in turn use two-fold axes (C3) for further symmetry factoring
My
»’k'
«:::i- into symmetric (G) and antisymmetric (U) branches; the resuiting four
;i‘:l
' branches are designated as AG, AU, EG, and EU.
c. Figure 2: Plot of the parameters m and 8 versus p for the Hoffmann-Lipscomb
5ol
E ) 3N extended Huckel computations on BuHuz'.
i. <
Figure 3: Plot of the energies of the core molecular orbitals Ag+ Tiu* Ty * Hg
Ly ,
i':;ﬁ' versus p in the absence of core-surface interactions for the Ty, and
¢'|l
W)
I:!:'. Hg orbitals for the Hoffmann-Ligscomb 3N extended Huckel computations
'3
. on B12H12z'.
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